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Abstract

The note discusses a fallacy in the approach proposed by Ivan Canay (2011, The Econo-

metrics Journal) for constructing a computationally simple two-step estimator in a quan-

tile regression model with quantile-independent �xed e�ects. We formally prove that the

estimator gives an incorrect inference for the constant term due to violation of the assump-

tion about additive expansion of the �rst-step estimator, which requires the independence

of its terms. Our simulations show that Canay's con�dence intervals for the constant term

are wrong. Finally, we focus on the fact that �nding a
√
nT consistent within estimator, as

required by Canay's procedure, may be problematic. We provide an example of a model,

for which we formally prove the non-existence of such an estimator.
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1 Introduction

Use of panel data quantile regression models dates back to Koenker (2004), who considers the
equation

Qyit(τ |xij) = αi + x′itβ(τ), t = 1, . . . , Ti, i = 1, . . . , n,

where Qyit(τ |xij) denotes the value of a given quantile for conditional distribution of the con-
tinuous dependent variable y for observation i at period t. The equation speci�es the individual
e�ects αi as additional unknown parameters, but their estimation is di�cult since n can be
very large in panel datasets.

A solution is apparently o�ered by a computationally simple estimator by Ivan Canay (2011,
The Econometrics Journal) for quantile-independent individual e�ects. Canay (2011) proposes
a two-step procedure, which �rst gives a consistent estimation of individual e�ects using the
within estimator and then applies the pooled version of the panel data quantile regression to
the dependent variable, cleared of the estimated individual e�ects. The Canay estimator is
widely used by practitioners and is much cited in the theoretical literature. According to the
Wiley online library, there are 115 citations in Web of Science journals (as of November 2018),
while Google Scholar gives 377 citations.

However, as we show in this note, the Canay's approach gives an incorrect inference for
the constant term because it violates the assumption of additive expansion of the �rst-step
estimator, which requires the independence of its terms. We show that the terms are dependent
between di�erent time periods and, as a result, the derivation of the asymptotics of the second-
step estimator of the constant term fails. Our simulations �nd that Canay uses the wrong
con�dence intervals for the constant term. The bias in the asymptotic standard errors increases
with the number of time periods in the panel. Finally, we focus on the fact that Canay's
approach depends on �nding a

√
nT consistent within estimator, which may be problematic in

a panel data model with individual e�ects. We provide an example of a model, for which we
formally prove the impossibility of constructing such an estimator.

2 Theoretical critique

The approach proposed in Canay's article uses a two-step estimator for the following model

Yit = X ′itθ(Uit) + αi, i = 1, . . . , n, t = 1, . . . , T,

where Uit does not depend on (Xit, αi).
At the �rst stage, a

√
nT consistent estimator θ̂µ of θµ = E[θ(Uit)] is used to compute

α̂i ≡
1

T

T∑
t=1

[Yit −X ′itθ̂µ].

The second stage de�nes Ŷit ≡ Yit − α̂i and the estimator θ̂(τ) as

θ̂(τ) = argmin
θ

1

nT

n∑
i=1

T∑
t=1

ρτ (Ŷit −X ′itθ)vit. (1)

The asymptotic properties of the two-step estimator are derived using the key assumption
described below, the most important part of which is an additive expansion of θ̂µ with the
independence of its terms ψit.

3



Assumption 4.2, Canay (2011). The �rst-step estimator θ̂µ admits the expansion

√
nT (θ̂µ − θµ) =

1√
nT

T∑
t=1

n∑
i=1

ψit + op(1), (2)

where ψit is an i.i.d. sequence of random variables with E[ψit] = 0 and �nite Ωψψ = E[ψitψ
′
it].

Assumption 4.2 is then exploited for the derivation of the asymptotic normality of the
second-step estimator.1 Note that the assumption is roughly equivalent to a

√
nT consistency

of the �rst-step estimator, where
√
nT (θ̂µ − θµ) converges to a �nite distribution.

Theorem 4.1, Canay (2011). Let n/T s → 0 for some s ∈ (1,+∞). Under Assumptions 3.2,
4.1 and 4.2

sup
τ∈T
‖θ̂(τ)− θ(τ)‖ →p 0,

and

√
nT (θ̂(·)− θ(·)) = [−J1(·)]−1

1√
nT

n∑
i=1

T∑
t=1

{φτ (εit(τ))Xit + J2(·)ξit}+ op(1), (3)

 G(·) in `∞(T ), (4)

where εit(τ) ≡ Y ∗it −X ′itθ(τ), Y ∗it = Yit − αi, ξit ≡ µ′Xψit − uit, uit ≡ Y ∗it −X ′itθµ, µX = E[Xit],
J1(τ) ≡ J1(θ(τ), τ, 0), J2(τ) ≡ J2(θ(τ), τ, 0), G(·) is a mean zero Gaussian process with the
covariance function EG(τ)G(τ ′)′ = J1(τ)−1Ψ(τ, τ ′)[J1(τ

′)−1]′, Ψ(τ, τ ′) is de�ned in the equation
below, and `∞(T ) is the set of uniformly bounded functions on T . The matrix Ψ(τ, τ ′) is given
by

Ψ(τ, τ ′) = S(τ, τ ′) + J2(τ)Ωξg(τ
′) + Ωgξ(τ)J2(τ

′)′ + J2(τ)ΩξξJ2(τ
′)′,

where S(τ, τ ′) ≡ (min{τ, τ ′} − ττ ′)E(XX ′), Ωgξ(τ) ≡ E[gτ (W, θ(τ))ξ], and Ωξξ ≡ E[ξ2].

Next, the within estimator is taken to satisfy Assumption 4.2 (see the lemma below) and
therefore supposed to be an appropriate �rst-step estimator. It is then used to construct the
asymptotic covariance matrix of the two-step estimator.

Lemma A.4, Canay (2011). Assume ΩXX ≡ E[(Xs
it − µsX)(Xs

it − µsX)′] is non-singular with
�nite norm, n/T a → 0 for some a ∈ (0,∞) and let Assumptions 3.2 and 4.1 hold. The within
estimator of θµ satis�es Assumption 4.2 with the in�uence function

ψit =

(
ψ0
it

ψsit

)
≡
(
Yit − µY − µs′XΩ−1XX(Xs

it − µsX)uit
Ω−1XX(Xs

it − µsX)uit

)
,

where X ′it = (1, Xs′
it ), µ

s
X ≡ E(Xs

it), µY ≡ E(Yit), uit is i.i.d. with E[uit|Xi] = 0 and E[u2it|Xi] =
X ′itΩUUXit, and ΩUU non-singular with �nite norm.

However, as we prove in the proposition below, there is a fallacy in Lemma A.4. Namely, the
assumption of independence of the �rst components ψ0

it is unjusti�ed. So the within estimator
does not satisfy Assumption 4.2 and the asymptotic standard errors are incorrect.

1Along with Assumption 4.2, which is the focus of this note, Theorem 4.1. in Canay's article uses Assumption
3.2 and Assumption 4.1. The former de�nes �xed e�ects as time-independent (�location shifters�) and the latter
gives the expressions for the terms J1 and J2 in the covariance matrix of the �rst-step estimator.
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Proposition 1. Given the conditions of Lemma A.4 the �rst components ψ0
it of the in�uence

vectors ψit are not independent across time periods if i = 1, . . . , n is �xed. Therefore, Assump-
tion 4.2 is not satis�ed.

Proof. Consider the model

Yit = X ′itθ(Uit) + αi, i = 1, . . . , n, t = 1, . . . , T.

Under the de�nition of uit = X ′it(θ(Uit)− θµ) from the proof of Lemma A.4, the model can be
expressed as

Yit = X ′itθµ + αi + uit = θ0µ +Xs′
it θ

s
µ + αi + uit, i = 1, . . . , n, t = 1, . . . , T,

where uit are i.i.d. across i and t (and independent of Xit), but αi are constant for di�erent t
when i is �xed. Taking expectations, we obtain

µY = E(Yit) = E(θ0µ +Xs′
it θ

s
µ + αi + uit) = θ0µ + µs′Xθ

s
µ.

(Here we assume that E(αi = 0), otherwise θ0µ is not identi�able.) This implies

Yit − µY = (Xs
it − µsX)′θsµ + αi + uit

and

ψ0
it = Yit − µY − µs′XΩ−1XX(Xs

it − µsX)uit = αi + uit + (Xs
it − µsX)′θsµ − µs′XΩ−1XX(Xs

it − µsX)uit.

The last three terms in the expression for ψ0
it are i.i.d. across all i and t.

Consider t 6= t′. Since ψ0
it and ψ

0
it′ contain the same term αi, they are generally correlated.

3 Demonstration of incorrect asymptotic distribution in

simulations

We replicate the simulations from section 5 of Canay's article in order to show the bias in
estimate of the standard error of the constant term. The model is de�ned as

Yit = (εit − 1) + εitXit + αi,

αi = γ(Xi1 + · · ·+XiT + ηit)− E(αi),

where εit is taken to be N(2, 1).
We �x γ, τ (this de�nes θ), n and T , and generate B = 1000 samples. We then compute

the con�dence intervals for the coe�cients using the asymptotic distribution derived by Canay.
Next, we compute the coverage probability for these con�dence intervals, dividing the number
of cases when the actual parameter value falls in the interval by the number of simulations B.
Along with examining the 90% con�dence intervals, as is standardly done, we also focus on the
80% con�dence intervals, since the lower con�dence level better illustrates the bias. As shown
by the results reported in Table 1, the coverage probabilities for θ1(τ) are close to their true
levels, but the coverage probabilities for θ0(τ) are overestimated.

We would also note that the coverage probability goes up with an increase in T . In other
words, the intervals become relatively wider, so the ratio of the length of the estimated con�-
dence interval to the length of the true con�dence interval grows with T .
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Table 1: Coverage probability for the con�dence intervals for model 5.1 from Canay (2011)

γ = 1, τ = 0.5, θ(τ) = (1, 2)′

80% con�dence level 90% con�dence level

n = 100 n = 1000 n = 100 n = 1000
θ0(τ) θ1(τ) θ0(τ) θ1(τ) θ0(τ) θ1(τ) θ0(τ) θ1(τ)

T = 5 0.811 0.740 0.789 0.745 0.910 0.854 0.914 0.853

T = 10 0.856 0.793 0.831 0.764 0.925 0.868 0.910 0.865

T = 50 0.889 0.783 0.898 0.782 0.962 0.879 0.962 0.879

T = 100 0.938 0.792 0.930 0.801 0.986 0.890 0.980 0.900

T = 200 0.969 0.826 0.973 0.787 0.997 0.916 0.997 0.878

T = 500 0.996 0.778 0.995 0.824 1.000 0.911 1.000 0.912

4 Final remarks on a
√
nT consistency

It should be noted that �nding a
√
nT consistent within estimator of a constant term is prob-

lematic in the model with individual e�ects αi. Indeed, a new observation signi�cantly improves
the accuracy of the estimator of the constant term only if it contains information about a new
individual (hence, about new αi). Here we provide a simple example of a panel data model
with individual e�ects, for which we strictly prove the non-existence of such an estimator.

Proposition 2. Let Yit = µ+ αi + εit, i = 1, . . . , n, t = 1, . . . , T , where αi are i.i.d. N(0, σ2
α),

εit are i.i.d. N(0, σ2
ε) and αi are independent of εjt for all i, j, t (j = 1, . . . , n). Suppose σα and

σε are known. Then, the following inequality holds for any unbiased estimator µ̂ of µ

Var(µ̂) ≥ σ2
α + σ2

ε/T

n
.

So µ̂ can be only
√
n consistent, and not

√
nT consistent.

Proof. The joint distribution of Y = (Y11, . . . , Y1T , . . . , Yn1, . . . , YnT )′ is Gaussian with the mean
µ = (µ, . . . , µ)′ and the covariance matrix I ⊗ Σ, where

Σ =


σ2
α + σ2

ε σ2
α . . . σ2

α

σ2
α σ2

α + σ2
ε . . . σ2

α
...

...
. . .

...
σ2
α σ2

α . . . σ2
α + σ2

ε

 .

This implies that the Fisher-information for µ is

I(µ) = ι′(I ⊗ Σ)−1ι = ι′(I ⊗ Σ−1)ι,

where ι = (1, . . . , 1)′ is a unity vector of length nT .

Σ−1 =
1

σ2
ε(Tσ

2
α + σ2

ε)


(T − 1)σ2

α + σ2
ε −σ2

α . . . −σ2
α

−σ2
α (T − 1)σ2

α + σ2
ε . . . −σ2

α
...

...
. . .

...
−σ2

α −σ2
α . . . (T − 1)σ2

α + σ2
ε

 .

Hence, I(µ) =
nTσ2

ε

σ2
ε(Tσ

2
α + σ2

ε)
=

nT

Tσ2
α + σ2

ε

.

An application of the Cram�er�Rao bound (see Amemiya (1985), Theorem 1.3.1) �nishes the
proof.
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